
UCRL-TR-224345

Improving Interpolation in
BoomerAMG

Josh Nolting, Ulrike Yang

September 11, 2006

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

 This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Improving Interpolation in BoomerAMG
Josh Nolting
Ulrike Yang

LLNL/University of Colorado

Introduction
 With new more aggressive coarsening algorithms that while reducing memory

also degrade convergence often dramatically, it was imperative that new interpolation

routines be implemented to recover this degradation. The implementation details and

results for three new interpolation routines, standard, extended, and F-F, are presented in

this paper. The project was focused on parallel implementation, so there is little

theoretical analysis. The references contain much of the algorithmic design issues and

analysis, if further understanding or exploration is needed, see [1][2][3]. It will be shown

throughout this paper that long-range interpolation is needed for a number of problems,

for some cases, there is almost a reduction in iterations by 2 orders of magnitude.

Background
 Three new interpolation routines were implemented into BoomerAMG, all of

which are based on long-range interpolation. Throughout this paper, represents a fine

point, represents a coarse point, represents the interpolatory set of point i ,

represents the neighborhood of point i , and it will be assumed that . The standard

interpolation routine will be discussed first, followed by extended, and finally F-F. For all

of the schemes, there are some underlying assumptions; given a C/F-splitting and sets

 of interpolatory points, the goal is to define the interpolation weights

in

F

C iP iN

Fi ∈

)(FiCPi ∈⊆ ikw

)(Fiewe
iPk

kiki ∈= ∑
∈

 (1)

so that (1) yields a reasonable approximation for any algebraically smooth e which

approximately satisfiesj

)(0 Fieaea
iNj

jijiii ∈=+ ∑
∈

 [1]. (2)

Because long range interpolation is used, for all of the new interpolation routines,

the interpolatory set of a fine point i consists of strong coarse neighbor points as well as

strong C-point connections of j , where = {strong F neighbors of i }. Using this

possibly bigger interpolatory set, the standard method is an extension of direct

interpolation. For this method interpolation weights are generated by substituting the

error in (2) for all using the j-th row of the matrix and applying direct

interpolation to the obtained new equation. There are two ways to calculate the weights

for standard interpolation. The negative and positive coefficients can either be calculated

separately or together. It will be seen later, that this can have a large influence on the

convergence. The extended method determines the weights analogously with classical

interpolation using the extended interpolatory set, i.e. strong F connections are collapsed

to the C points. With the extended interpolatory set, the points are collapsed to

the diagonal as well. Finally, F-F interpolation is just a modification to extended

interpolation. The main difference is that the points are not collapsed to the

diagonal, and the interpolatory set is only extended if has no common strong

coarse neighbor with .

sFj∈

je sFj∈

sFj∈

sFj∈
sFj∈

i

Implementation
The ParCSR format is used to store the BoomerAMG matrices, with rows

partitioned between the processors. The unknowns corresponding to the diagonal entry of

these rows will be considered local to the processor. Each ParCSR matrix consists of two

matrices, one containing the local unknowns and one containing the rest of the unknowns

(or off- processor column non-zeros). More detailed discussions concerning the design

and data structures of BoomerAMG can be found in [4]. With this information accessible,

it is easy to get information for the neighbors of the unknown. However, with long-range

interpolation, neighbors of neighbor’s can possibly be used as interpolatory points and

can affect interpolation weights. Thus, before determining the interpolation points and

weights, the neighbors of neighbors information needs to be determined and made

accessible. First, the full row information for the off-processor unknowns is gathered.

New off processor points (neighbors of neighbors not previously seen) can then be

determined and off-processor arrays can be formed (C/F-splitting, fine-to-coarse

mappings, column mapping for off-processor matrices, etc. [4]) Because of the

monotonicity required in some of these arrays, care needs to be taken to correctly store

the new off-processor points. Also, since new points could force communication with

new processors, communication patterns need to be adjusted. With all the needed

information at hand, the interpolation matrix can be formed. This is implemented with

two main loops, both looping over the local fine points. The first loop is used to

determine the size of the interpolation matrix, the second determines the weights and the

column locations for the local interpolation matrix. After the 2nd loop, the communication

pattern for the interpolation matrix is determined and the column locations for the off-

processor interpolation matrix are found and stored.

Results
 The new interpolation routines are effective for situations in which coarsening

leads to strong - connections with no common C-point. For all of the tests presented

below, PMIS coarsening will be used [5]. Also, there are tools and schemes that could be

used to control complexity or accelerate convergence, however, for these tests, no special

treatment will be given so that each scheme can be studied as a standalone method. The

3-dimensional problems were conducted with processor counts equal to 1, 8, 64, and 512.

The problem size was kept approximately at 40 X 40 X 40 unknowns on each processor.

In other words, as the problem size doubles in each direction, the number of processors

used grows by a factor of 8. For the 2-dimensional case, the problem size for each

processor will be approximately 512 X 512 unknowns and processor counts will be equal

to 1, 4, 16, 64, and 256. The PDEs will be discretized using finite difference methods. For

these test cases, if the residual has not been reduced below the tolerance after 1000

iterations, it is considered not converging.

F F

 The 3d Poisson problem, with constant righthand side will be explored first.

Classical and multipass are two interpolation routines that are already implemented, and

they will be used for comparisons.

Laplacian (# of rows ~40X40X40 per processor)

0

10

20

30

40

50

60

70

80

1 10 100 1000

Number of Processors

Ti
m

e:
 S

ol
ve

+S
et

up
 (s

)

Classical
Multipass
Standard
Extended
FF

Figure 1: Time to needed to reduce the relative residual below 10-7.

For small test cases, it appears that the original methods are satisfactory, but as the

problem size increases, it starts to become more important to use the long-range

interpolation routines. The long-range methods consistently need more time for setup, but

less iterations. The results for the new routines could be improved greatly if the

interpolation matrix was truncated. However, this test case still serves as a good base test.

 A PDE with jumps will be used as the 2nd test. This is a good problem, because

PMIS coarsening could be used as a viable option for coarsening. It then becomes

imperative to use long-range interpolation. The “classical” method does not even

converge for the smallest problem so it is purged from the plot below. Also, the standard

routine is not scaling at all, and needs 297 iterations to converge for the 64 processor

case. This is not very good when compared to extended and F-F, which converged in 11

and 15 iterations respectively. For this problem it would be best to use extended or F-F,

with F-F consistently using less time. The multipass routine is working for small

problems but is beginning to struggle as the problem size increases.

PDE w/Jumps (# of rows ~40X40X40 per processor)

0

20

40

60

80

100

120

140

160

1 10 100 1000

Number of Processors

Ti
m

e:
 s

ol
ve

+s
et

up
 (s

)

Multipass
Standard
Extended
FF

Figure 2: Time to needed to reduce the relative residual below 10-7.

It can be seen below, that the setup times for multipass are very small and scaling very

well, however, the iterations to converge are not scaling as well, causing the setup plus

solve times to become greater than extended and F-F. It requires 14 and 17 iterations to

converge for extended and F-F respectively, and 200 iterations for multipass.

PDE w/Jumps (# of rows ~40X40X40 per processor)

-5

5

15

25

35

45

55

65

1 10 100 1000

Number of Processors

Ti
m

e:
 s

et
up

 (s
)

Multipass
Standard
Extended
FF

 Figure 3: BoomerAMG setup times.

The final 3d case is a problem with anisotropy in the y-direction. This also shows

the importance of the long range interpolation schemes.

Anisotropic (# of rows ~40X40X40 per processor)

0

10

20

30

40

50

60

70

1 10 100 1000

Number of Processors

Ti
m

e:
 S

ol
ve

+S
et

up
 (s

)

Classical
Multipass
Standard
Extended
FF

 Figure 4: Time to needed to reduce the relative residual below 10-7.

The classical and multipass schemes are starting to blow up as the problem size starts to

get big. It takes approximately 135 iterations for the old routines to converge, compared

with 15 for the long-range interpolations. All of the three new methods look to be similar

for this problem. The standard and extended schemes need less iteration than F-F, but the

F-F routine consistently has lower setup times by enough to be slightly quicker in the

timings provided above.

The first 2d test is a 45º rotated PDE with anisotropy. As was observed in the last

two 3d tests, it is necessary to use long-range interpolation.

Rotated 45 degrees, anisotropic (eps = .001)

0
100
200
300
400
500

1 10 100 1000
Number of Processors

Ti
m

e:
 S

et
up

 +
 S

ol
ve

 (s
)

Classical
Multipass
standard
Standard_new
extended
FF

Figure 5: Time to needed to reduce the relative residual below 10-7.

The original implementation of the standard interpolation routine failed to converge as

the problem size grew. This is an example of a case where no separation between

negative and positive connections in the weighting formula improves convergence

dramatically.

Rotated 45 degrees, anisotropic (eps = .001)

0

10

20

30

40

1 10 100 1000
Number of Processors

Ti
m

e:
 S

et
up

 +
 S

ol
ve

 (s
)

Standard_new
extended
FF

Figure 6: Time to needed to reduce the relative residual below 10-7.

For this problem, the extended routine is the fastest and uses the least number of

iterations, but all three of the above algorithms would be viable.

The final 2d test is a 60º rotated PDE with anisotropy. For this case, the only two

methods that worked, were extended and F-F. The extended routine uses considerably

less iterations to converge than F-F (15 versus 46 for 256 processors), which is why the

time for setup plus solve is much better for extended.

Rotated 60 Degrees, Anisotropic

0

50
100

150

200

250
300

350

1 10 100 1000

Number of Processors

Ti
m

e:
 S

et
up

 +
 S

ol
ve

 (s
)

Extended
ff

Figure 7: Time to needed to reduce the relative residual below 10-7.

Conclusion
 Long range interpolation was shown to be necessary for acceptable convergence

in the above problems, outside of the Laplacian. Out of the long range schemes, extended

and F-F were generally superior to both standard schemes. Although both extended and

F-F performed similarly for the 3d case, F-F was always slightly faster. However, in the

2d test problem, extended has the best performance, and it appears to be getting better as

the problem size increases. The bottom line is; for these types of problems, if PMIS

coarsening is used, F-F or extended interpolations should be used as well.

References
[1] Stuben, K, “An Introduction to Algebraic Multigrid”, Multigrid, p. 413, Academic
Press, 2001.

[2] Butler, Jeffrey, “Improving Coarsening and Interpolation”, Technical Report, Applied
Mathematics Department, Waterloo, Ontario, Canada.

[3] Briggs, William L., Henson, Van Emden, McCormick, Steve F., A Multigrid Tutorial
Second Edition, SIAM, 2000.

[4] R.D. Falgout, J.E. Jones, and U.M. Yang, “The Design and Implementation of hypre,
a Library of Parallel High Performance Preconditioners”, chapter in Numerical Solution
of Partial Differential Equations on Parallel Computers, A.M. Bruaset and A. Tveito,
eds., Springer-Verlag, 51 (2006), pp. 267-294. UCRL-JRNL-205459.

[5] H. De Sterck, U.M. Yang, and J.J. Heys, Reducing Complexity in Parallel Algebraic
Multigrid Preconditioners, SIAM J. on Matrix Analysis and Applications, 27 (2006), pp.
1019-1039. UCRL-JRNL-206780.

